╝÷╜─ ╞φ┴²▒Γ ╗τ┐δ ╣µ╣²

1. ╝÷╜─ ╞φ┴²▒Γ

2. ╝÷╜─ ╞φ┴²▒Γ└╟ ╞»┬í

3. ║±┴╓╛≤/╜║┼⌐╕│╞« └╘╖┬ ╣µ╣²

 

4. └Ñ┐í╡≡┼═└╟ ╝÷╜─ ╞φ┴²▒Γ┐í╝¡ ╗τ┐δ ░í┤╔╟╤ ╝÷╟╨ ▒Γ╚ú

1. ▒╫╕«╜║ ╣«└┌

\alpha

\beta

\gamma

\delta

\epsilon

\varepsilon

\zeta

\eta

\theta

\vartheta

\iota

\kappa

\lambda

\mu

\nu

\xi

\pi

\varpi

\rho

\sigma

\varsigma

\tau

\upsilon

\phi

\varphi

\chi

\psi

\omega

 

 


 

\Gamma

\Delta

\Theta

\Lambda

\Xi

\Pi

\Sigma

\Upsilon

\Phi

\Psi

\Omega

 


2. ▒Γ╚ú╡Θ

\aleph

\hbar

\imath

\jmath

\ell

\wp

\Re

\Im

\partial

\infty

\prime

\emptyset

\nabla

\surd

\top

\bot

\smallint

\angle

\triangle

\backslash

\forall

\exists

\neg

\flat

\natural

\sharp

\clubsuit

\diamondsuit

\heartsuit

\spadesuit

\S

\P

 

 

 

 


3. └╠╟╫ ┐¼╗Ω└┌

\triangleright

\triangleleft

\star

\cdot

\times

\ast

\div

\diamond

\pm

\mp

\oplus

\ominus

\otimes

\oslash

\odot

\bigcirc

\circ

\bullet

\bigtriangleup

\bigtriangledown

\cup

\cap

\uplus

\wedge

\vee

\setminus

\wr

\amalg

\sqcap

\sqcup

\dagger

\ddagger

 

 

 

 


4. ░ⁿ░Φ ┐¼╗Ω└┌

\smile

\frown

\asymp

\equiv

\subseteq

\supseteq

\leq

\geq

\preceq

\succeq

\sim

\approx

\subset

\supset

\ll

\gg

\prec

\succ

\simeq

\propto

\in

\ni

\not

\mapsto

\perp

\vdash

\dashv

\sqsubseteq

\sqsupseteq

 


5. ╚¡╗∞╟Ñ╡Θ

╚¡╗∞╟Ñ┤┬ ░ⁿ░Φ ┐¼╗Ω└┌└╟ └╧┴╛└╕╖╬ ┤┘╛τ╟╤ ╣µ╣²└╕╖╬ ╗τ┐δ╟╥ ╝÷ └╓▒Γ ╢º╣«┐í ╡√╖╬ ║╨╖∙╟╒┤╧┤┘.
 

\leftharpoonup

\leftharpoondown

\rightharpoonup

\rightharpoondown

\leftarrow

\rightarrow

\uparrow

\downarrow

\leftrightarrow

\nearrow

\searrow

\Leftarrow

\Rightarrow

\Uparrow

\Downarrow

\Leftrightarrow

\nwarrow

\swarrow

\mid

\parallel

\updownarrow

\Updownarrow

 

 


6. ┼½ ┐¼╗Ω└┌

\sum

\prod

\coprod

\int

\oint

\bigcap

\bigcup

\bigsqcup

\bigvee

\bigwedge

\bigodot

\bigotimes

\bigoplus

\biguplus

 

 

7. ░²╚ú╡Θ(delimiter)

(

)

[

]

\{

\}

\lfloor

\rfloor

\lceil

\rceil

\langle

\rangle

/

\backslash

\|

\uparrow

\downarrow

\updownarrow

\uparrow

\downarrow

\updownarrow

|

 

 

 

8. ╛╫╝╛╞«

\hat{a}

\breve{a}

\grave{a}

\bar{a}

\dot{a}

\check{a}

\acute{a}

\tilde{a}

\vec{a}

\ddot{a}

9. └σ╜─╡Θ

\overline{abc}

\underline{abc}

\overbrace{abc}

\underbrace{abc}

\widehat{abc}

\widetilde{abc}

\overleftarrow{abc}

\overrightarrow{abc}

 

10. ┐⌐╣Θ╡Θ

\,

\:

\;

\!

\quad

\qquad

░í┤┬ ┐⌐╣Θ

┴▀░ú ┐⌐╣Θ

╡╬▓¿┐ε ┐⌐╣Θ

┐⌐╣Θ ┴┘└╠▒Γ

M ┼⌐▒Γ└╟ ┐⌐╣Θ

M ┼⌐▒Γ ╡╬ ╣Φ└╟ ┐⌐╣Θ

 

11. ╟╘╝÷ └╠╕º╡Θ

\arccos

\cos

\csc

\exp

\ker

\limsup

\min

\sinh

\arcsin

\cosh

\deg

\gcd

\lg

\ln

\Pr

\sup

\arctan

\cot

\det

\hom

\lim

\log

\sec

\tan

\arg

\coth

\dim

\inf

\liminf

\max

\sin

\tanh

 

╜║┼⌐╕│╞« ╗≤┼┬┐í╝¡└╟ ╝÷╜─ └╘╖┬

1. ║╨╝÷(frac)

n_0 + \frac{1}{n_1
      + \frac{1}{n_2
      + \frac{1}{n_3
      + \frac{1}{n_4+\cdots}}}}


2. ▒┘╚ú(sqrt)

 y=\sqrt{x^2+\sqrt{x+12}}


 

3. ╣Φ┐¡

\left[
\begin{array}{cccc}
\a_{11} & \a_{12} & \cdots & \a_{1n}  \\
\vdots & \vdots & \ddots & \vdots \\
\a_{n1} & \a_{n2} & \cdots & \a_{nn} \end{array}
\right]

4. Eqnarray

\begin{eqnarray}
y & = & x^2 + 1\\
y & > & a - b + c - d + e - f + \\
   &    & g - h + i - j \nonumber
\end{eqnarray}

 

 

┴╓╜─╚╕╗τ │¬╕≡ └╬┼═╖ó╞╝║Ω

<121-080> ╝¡┐∩╜├ ╕╢╞≈▒╕ ┤δ╚∩╡┐ 485-1╣°┴÷ ║Ñ├│ ║±┴ε┤╧╜║ ╝╛┼═ ╝¡░ⁿ 4├■
e-mail :
weinfo@namo.co.kr  Fax : (02) 3275-1358

Copyright (C) 1998 - 1999 Namo Interactive Inc. All rights reserved.